Code: 20CS3601

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

COMPILER DESIGN (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Differentiate tokens, patterns, lexeme.	L2	CO1	7 M			
	b)	Write a short note on:	L2	CO1	7 M			
		i. Assembler						
		ii. Linkers and loaders						
OR								
2	a)	What are the various phases of a compiler?	L2	CO1	10 M			
		Explain each phase in detail by using the						
		input " $x=(y+z)*2$ ".						
	b)	What are the various parts in <i>LEX</i> program?	L2	CO1	4 M			
UNIT-II								
3	a)	Write the production rules to eliminate the	L2	CO1	4 M			
		left recursion and left factoring problems.						

	b)	Consider the grammar.	L3	CO2	10 M
		S->AB ABad			
		A->d			
		E ->b			
		D->b ε			
		B->c			
		Construct the predictive parsing table. Show			
		that the given grammar is $LL(1)$ or not.			
		OR			
4	a)	Write Rules to construct <i>FIRST</i> function and	L2	CO1	4 M
		FOLLOW function.			
	b)	Show the following Grammar	L3	CO2	10 M
		S-> AaAb BbBa			
		Α->ε			
		Β->ε			
		Is <i>LL(1)</i> and parse the input string "ba".			
		UNIT-III			
5	a)	What is a shift-reduce parser? Explain in	L2	CO1	4 M
		detail the conflicts that may occur during			
		shift-reduce parsing.			
	b)	Write the rules to construct the SLR parsing	L2	CO3	10 M
		table.			
		E-> E+T T			
		T-> TF F			
		F-> F* a b			
		Construct the SLR parsing table and also parse the input "a*b+a".			

		OR			
6	a)	Write the rules to construct the SLR parsing table.	L2	CO1	7 M
	b)	List all $LR(0)$ items for the following	L3	CO3	7 M
		grammar:			
		$S \rightarrow AS \mid b$			
		A→SA a			
		UNIT-IV			
7	a)	What is LALR parser? Construct the set of	L3	CO3	7 M
		LR(1) items for this grammar:			
		S-> CC			
		C-> aC			
		C->d			
	b)	What is intermediate code and write the two	L2	CO4	7 M
		benefits of intermediate code generation.			
		OR	•		
8	a)	Draw the syntax tree and DAG (Direct	L3	CO4	7 M
		Acyclic Graph) for the following			
		expression:			
		(a*b)+(c-d)*(a*b)+b			
	b)	i. What are the limitations of static	L4	CO5	7 M
		allocation?			
		ii. List Dynamic Storage allocation			
		techniques.			

	UNIT-V						
9	a)	What are basic blocks? What is the use of	L2	CO4	7 M		
		algebraic identities in optimization of basic					
		blocks?					
	b)	What do you mean by machine dependent	L3	CO1	7 M		
		and machine independent optimization?					
OR							
10	a)	Write a short note with example to optimize	L3	CO1	7 M		
		the code:					
		i. Dead code elimination.					
		ii. Code motion.					
	b)	Discuss the various peephole optimization	L2	CO4	7 M		
		techniques in detail.					